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Abstract In this paper,we have applied an efficient

wavelet-based approximation method for solving the Fish-

er’s type and the fractional Fisher’s type equations arising in

biological sciences. To the best of our knowledge, until now

there is no rigorous wavelet solution has been addressed for

the Fisher’s and fractional Fisher’s equations. The highest

derivative in the differential equation is expanded into

Legendre series; this approximation is integrated while the

boundary conditions are applied using integration constants.

With the help of Legendre wavelets operational matrices, the

Fisher’s equation and the fractional Fisher’s equation are

converted into a system of algebraic equations. Block-pulse

functions are used to investigate the Legendre wavelets

coefficient vectors of nonlinear terms. The convergence of

the proposed methods is proved. Finally, we have given some

numerical examples to demonstrate the validity and appli-

cability of the method.

Keywords Fisher’s equation � Fractional Fisher’s

equation � Operational matrices � Legendre wavelets �
Homotopy analysis method � Differential transform method

Introduction

Wavelet Analysis, as a relatively new area in applied

mathematical research, has received considerable attention

in dealing with PDEs and fractional type PDEs (Hariharan

et al. 2009; Hariharan and Kannan 2009, 2010). The

propagation of a mutant gene model was first introduced by

Fisher, which is known as Fisher’s equation (Murray

1977). These equations have wide applications in the fields

of logistic population growth, flame propagation, euro

physiology, autocatalytic chemical reactions, branching

Brownian motion processes, and nuclear reactor theory

(Hariharan and Kannan 2009; Wazwaz and Gorguis 2004;

Olmos and Shizgal 2006). The Fisher–Kolmogorov equa-

tion describes the growth of a gene within a population. We

have seen that the solution can easily be described as a

traveling wave—moving with constant speed and without

change of the front’s shape. This means that the growth of

the gene is the same at very time. We have used the leading

edge approximation to the asymptotic behavior of left- and

right- moving fronts. With an asymmetric derivative, we

obtain different properties for both directions of propaga-

tion. The right-moving front is accelerated and again, the

leading edge approximation has permitted to calculate the

exponential speed. As for the Fisher–Kolmogorov model,

we observe that for decreasing values of a, profiles accel-

erate later and at the beginning of the simulation, profiles

seem to move with constant speed.

In recent years, wavelet transforms have found their way

into many different fields in science and engineering.

Moreover, wavelets established a connection with fast

numerical algorithms.

Wavelet theory possesses many useful properties, such

as Compact support, orthogonality, dyadic, orthonormality,

and multi-resolution analysis (MRA). Fractional Partial

differential equations (FPDEs) are generalizations of clas-

sical partial differential equations of integer order. Math-

ematical modeling of complex processes is a major

challenge for the contemporary scientist. In contrast to

simple classical systems, where the theory of integer order
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differential equations is sufficient to describe their

dynamics, fractional derivatives provide an excellent and

an efficient instrument for the description of memory and

hereditary properties of various complex materials and

systems (Turut and Guzel 2012; Meral et al. 2010; Seki

et al. 2003; Henry and Wearne 2000; Baeumer et al. 2008;

Rida et al. 2010; Momani and Qaralleh 2007). But these

FPDEs are difficult to get their exact solutions (Turut and

Guzel 2012; Meral et al. 2010; Seki et al. 2003; Cuyt and

Wuytack 1987). So the approximation methods must be

used. Analytical methods enable researchers to study the

effect of different variables or parameters on the function

under study easily. Recently, there are several new

approaches have been proposed for solving nonlinear

PDEs, for example, the Adomian decomposition method

(Wazwaz and Gorguis 2004; Abdusalam 2004), the varia-

tional iteration method (Matinfar and Ghanbari 2009),

differential Transform method (Matinfar et al. 2012),

reduced differential transform method (Yıldırım et al.

2012), homotopy Analysis method (Khan et al. 2012; Liao

2004; Hariharan 2013), and exp-function method (He and

Wu 2006). Recently, local fractional calculus has been

used to deal with problems for non-differentiable func-

tions; see (Yang 2011a, b, 2012; Yang and Baleanu 2013)

and the references therein. Local fractional Fourier series

method is one of very efficient and powerful techniques for

finding the solutions of the local fractional differential

equations. It is also worth noting that the advantage of the

local fractional differential equations displays the non-

differential solutions, which show the fractal and local

behaviors of moments.

In recent years, nonlinear reaction diffusion equations

(NLRDE) have been used as a basis for a wide variety of

models, for the special spread of gene in population (Mo-

mani and Qaralleh 2007) and for chemical wave propaga-

tion (Hariharan and Kannan 2009, 2010). Wazwaz and

Gorguis (2004) developed the Adomian decomposition

Method for the Fisher type equations. Carey and Shen

(1995) implemented the least square Finite element method

for Fisher’s reaction diffusion equation. Al-khaled (2001)

introduced the sinc-collocation method by the Pseudo-

spectral method for the numerical solution of Fisher’s

equation. Mittal and Ram (2008) have presented the dif-

ferential quadrature method for Fisher’s equations. Merdan

(2012) solved the time-fractional reaction–diffusion equa-

tions by the fractional variational iteration method. Khan

et al. (2012) established the analytical solutions of the

fractional reaction–diffusion equations by the homotopy

analysis method. Kurulay and Bayram (2012) showed the

numerical solutions of time-fractional reaction–diffusion

equation by the differential transform method. Yang et al.

(2013) addressed a transient heat conduction problem in a

fractal semi-infinite bar solved by the Yang-Fourier

transform.

In the numerical analysis, wavelet-based methods and

hybrid methods become important tools because of the

properties of localization. In wavelet-based methods, there

are two important ways of improving the approximation of

the solutions: Increasing the order of the wavelet family

and the increasing the resolution level of the wavelet.

There is a growing interest in using various wavelets

(Razzaghi and Yousefi 2000; Yousefi 2006; Mohammadi

and Hosseini 2011; Maleknejad and Sohrabi 2007; Harih-

aran et al. 2009; Hariharan and Kannan 2009; Hariharan

and Kannan 2010a, b; Yang 2013; Heydari et al. 2012) to

study problems, of greater computational complexity.

Among the wavelet transform families the Haar and

Legendre wavelets deserve much attention. The basic idea

of Legendre wavelet method is to convert the PDEs to a

system of algebraic equations by the operational matrices

of integral or derivative (Razzaghi and Yousefi 2001;

Parsian 2005). The main goal is to show how wavelets and

multi-resolution analysis can be applied for improving the

method in terms of easy implementability and achieving

the rapidity of its convergence. Razzaghi and Yousefi

(Razzaghi and Yousefi 2001) introduced the Legendre

wavelet method for solving variational problems and con-

strained optimal control problems. Hariharan et al. 2009,

Hariharan and Kannan 2009, Hariharan and Kannan 2010a,

b had introduced the diffusion equation, convection–dif-

fusion equation, Reaction–diffusion equation, Non linear

parabolic equations, fractional Klein–Gordon equations,

Sine–Gordon equations and Fisher’s equation by the Haar

wavelet method. Mohammadi and Hosseini (2011) had

showed a new Legendre wavelet operational matrix of

derivative in solving singular ordinary differential equa-

tions. Jafari et al. (2011) had solved the fractional differ-

ential equations by the Lagendre wavelet method. Parsian

(2005) introduced two dimension Legendre wavelets and

operational matrices of integration. In recent years, many

analytical/approximation methods have been proposed for

solving Fisher’s and fractional Fisher’s equations. For

example, Adomian decomposition method (Wazwaz and

Gorguis 2004), the variational iteration method (Matinfar

and Ghanbari 2009), the Homotopy perturbation method

(Matinfar and Ghanbari 2009), the differential transform

method (Matinfar et al. 2012), the homotopy analysis

method (Hariharan 2013) and other methods (Olmos and

Shizgal 2006). Recently, Hariharan and Rajaraman (2013)

established a new coupled wavelet-based method applied

to the nonlinear reaction–diffusion equation arising in

mathematical chemistry. Yin et al. (2013) introduced a

wavelet-based hybrid method for solving Klein–Gordan

equations.
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In this work, we have applied a wavelet-based coupled

method (LLWM) which combines the Laplace transform

method and the Legendre wavelets method for the

numerical solution of Fisher’s and fractional Fisher’s

equations.

This paper is organized as follows: Basic definitions of

wavelets, Legendre wavelets and their properties are

described in ‘‘Legendre wavelets and properties’’ section.

Then, the method of solution of the Fisher’s and fractional

Fisher’s equations by the LLWM is presented in ‘‘Methods

of solution’’ section. In ‘‘Convergence analysis and error

estimation’’ section, the convergence analysis is described.

In ‘‘Illustrative examples’’ section, several numerical

examples are presented to demonstrate the effectiveness of

the proposed method. Concluding remarks are given in

‘‘Conclusion’’ section.

Legendre Wavelets and Properties

Wavelets

Wavelets are the family of functions which are derived

from the family of scaling function f/j;k:k 2 Zg where

/ xð Þ ¼
X

k

ak/ 2x � kð Þ ð1Þ

For the continuous wavelets, the following equation can be

represented:

Wa;b xð Þ ¼ aj j
�1
2 W

x� b

a

� �
a; b 2 R; a 6¼ 0 ð2Þ

where a and b are dilation and translation parameters,

respectively, such that W xð Þ is a single wavelet function

(Yin et al. 2012).

The discrete values are put for a and b in the initial form

of the continuous wavelets, i.e.:

a ¼ a
�j
0 ; a0 [ 1; b0 [ 1 ð3Þ

b ¼ kb0a
�j
0 ; j; k 2 Z: ð4Þ

Then, a family of discrete wavelets can be constructed as

follows:

Wj;k ¼ a0j j
1
2W 2 jx� k
� �

ð5Þ

So, Wj;kðxÞ constitutes an orthonormal basis in L2 (R),

where W xð Þ is a single function.

Legendre Wavelets

The Legendre wavelets are defined by

wnmðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

r
2

k
2Lmð2kt� n

_Þ;

0;

8
>><

>>:

for
n
_

� 1

2k
� t� n

_

þ 1

2k

otherwise

;

ð6Þ

where m = 0, 1, 2,…, M - 1 and k = 1, 2,…, 2j-1. The

coefficient
ffiffiffiffiffiffiffiffiffiffiffi
mþ 1

2

q
for orthonormality, then, the wavelets

Wk;m xð Þ form an orthonormal basis for L2[0,1]. In the

above formulation of Legendre wavelets, the Legendre

polynomials are in the following way:

p0 ¼ 1;

p1 ¼ x;

pmþ1 xð Þ ¼ 2mþ 1

mþ 1
xpm xð Þ � m

mþ 1
pm�1 xð Þ

ð7Þ

and pmþ1 xð Þf g are the orthogonal functions of order m,

which is named the well-known shifted Legendre polyno-

mials on the interval [0,1]. Note that, in the general form of

Legendre wavelets, the dilation parameter is a ¼ 2�j and

the translation parameter is b ¼ n 2 j (Yin et al. 2012).

Block-Pulse Functions (BPFs) (Yin et al. 2013)

The block-pulse functions form a complete set of orthog-

onal functions which defined on the interval [0, b) by

bi tð Þ ¼ 1;
i� 1

m
b � t \

i

m
b;

0; elsewhere

(
ð8Þ

for i = 1, 2,…, m. It is also known that for any absolutely

integrable function f(t) on [0, b) can be expanded in block-

pulse functions:

f tð Þ ffi nT BmðtÞ ð9Þ

nT ¼ f1; f2; . . .; fm½ �;Bm tð Þ ¼ b1 tð Þ; b2 tð Þ; . . .; bm tð Þ½ � ð10Þ

where fi are the coefficients of the block-pulse function,

given by

fi ¼
m

b

Zb

0

f tð Þbi tð Þdt ð11Þ

Remark 1 Let A and B are two matrices of m 9 m, then

A � B ¼ aij � bij

� �
mm
:

Lemma 1 Assuming f(t) and g(t) are two absolutely inte-

grable functions, which can be expanded in block-pulse function

as f(t) = FB(t) and g(t) = GB(t), respectively, then we have

f tð Þg tð Þ ¼ FB tð ÞBT tð ÞGT ¼ HB tð Þ ð12Þ

where H ¼ F � G:
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Approximating the Nonlinear Term (Yin et al. 2013)

The Legendre wavelets can be expanded into m-set of

block-pulse Functions as

W tð Þ ¼ /m� mBmðtÞ ð13Þ

Taking the collocation points as following

ti ¼
i� 1=2

2k�1M
; i ¼ 1; 2; . . .; 2k�1M ð14Þ

The m-square Legendre matrix /m� m defined as

/m� m ffi W t1ð ÞW t2ð Þ. . .Wðt2k�1MÞ½ � ð15Þ

The operational matrix of product of Legendre wavelets

can be obtained using the properties of BPFs, let

f x; tð Þ and gðx; tÞ are two absolutely integrable functions,

which can be expanded by Legendre wavelets as f x; tð Þ ¼
WT xð ÞFW tð Þ and g x; tð Þ ¼ WT xð ÞGW tð Þ, respectively.

f x; tð Þ ¼ WT xð ÞFW tð Þ ¼ BT xð Þ/T
mmF/mmB tð Þ; ð16Þ

g x; tð Þ ¼ WT xð ÞGW tð Þ ¼ BT xð Þ/T
mmG/mmB tð Þ; ð17Þ

and Fb ¼/T
mmF/mm;Gb ¼/T

mmG/mm;Hb ¼ Fb � Gb: Then,

f x; tð Þg x; tð Þ ¼ BT HbB tð Þ;
¼ BTðxÞ/T

mminvð/T
mmÞHbinvðinvð/T

mmÞ
Hbinvð/mmÞÞ/mmBðtÞ ¼ WT xð ÞHW tð Þ

ð18Þ

where H ¼ inv /T
mm

� �
Hbinv /mmð Þð Þ:

Function Approximation

A given function (x) with the domain [0, 1] can be

approximated by

f xð Þ ¼
X1

k¼1

X1

m¼0

ck;mWk;m xð Þ ¼ CT :W xð Þ: ð19Þ

Here, C and W are the matrices of size (2j-1 M 9 1).

C ¼ c1;0; c1;1; . . .c1;M�1; c2;0; c2;1; . . .c2;M�1; . . .cj�1
2;1 ;

h

. . .; c
j�1
2;M�1

iT

ð20Þ

W xð Þ ¼ ½W1;0;W1;1;W2;0;W2;1; . . .W2;M�1; . . .W2j�1;M�1�T

ð21Þ

Method of Solution

Solving the Fisher’s and Fractional Fisher’s Equations

by the LLWM

We consider the well-known Fisher’s equation (Hariharan

and Kannan 2009)

oU

ot
¼ o2U

ox2
þ aU 1� Uð Þ ð22Þ

with the initial condition

U x; 0ð Þ ¼ f xð Þ; 0� x� 1 ð23Þ

Taking Laplace transform on both sides of Eq. (22), we get

sLðUÞ � Uðx; 0Þ ¼ L½Uxx þ aU � aU2� ð24Þ

sLðUÞ ¼ Uðx; 0Þ þ LðUxx þ aU � aU2Þ
� �

ð25Þ

LðUÞ ¼ Uðx; 0Þ
s
þ 1

s
LðUxx þ aU � aU2Þ ð26Þ

Taking inverse Laplace transform to Eq. (26), we get

Uðx; tÞ ¼ Uðx; 0Þ þ L�1 1

s
L Uxx þ aU � aU2Þ
� �� �

ð27Þ

Because

L�1 1

s
L tnð Þ

	 

¼ L�1 n!

snþ2

� �

¼ 1

nþ 1
tnþ1; n ¼ 0; 1; 2; . . .ð Þ

ð28Þ

We have

L�1½s�1LðÞ� ¼
Z t

0

ð:Þdt ð29Þ

From Eq. (27)

Uðx; tÞ ¼ Uðx; 0Þ þ L�1 1

s
L Uxx þ g Uð Þð Þ

� �
ð30Þ

where g Uð Þ ¼ aU � aU2

Uðx; tÞ ¼ Uðx; 0Þ þ L�1 1

s
L Uxx þ g Uð Þð Þ

� �
ð31Þ

Using the Legendre wavelets method,

Uðx; tÞ ¼ CTwðx; tÞ
Uðx; 0Þ ¼ STwðx; tÞ
gðUÞ ¼ GTwðx; tÞ

9
>=

>;
ð32Þ

Substituting Eq. (32) in Eq. (27), we obtain

CT ¼ ST þ ðCT D2
x � GTÞP2

t : ð33Þ

Here, GT has a nonlinear relation with C. When we solve a

nonlinear algebraic system, we get the solution is more com-

plex and large computation time. In order to overcome the

above drawbacks, we introduce an approximation formula as

follows:

Unþ1 ¼ Uðx; 0Þ þP
o2Un

ox2
þ gðUnÞ

	 

ð34Þ

where g Uð Þ ¼ aU � aU2:
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Expanding u(x, t) by Legendre wavelets using the fol-

lowing relation

CT
nþ1 ¼ CT

0 þ CT
n D2

x � GT
n

� �
P2

t : ð35Þ

Convergence Analysis and Error Estimation (Yin et al.

2013; Hariharan and Rajaraman 2013)

U	 ¼ U0 þP U	xx þ gðU	Þ
� �

ð36Þ

Unþ1 ¼ U0 þP ðUnÞxx þ gðUnÞ
� �

ð37Þ

Subtracting Eq. (36) from Eq. (37), we obtain

Unþ1 � U	 ¼ P ðUn � U	Þxx þ gðUnÞ � gðU	Þ
� �

ð38Þ

Using Lipschitz condition, gðUnÞ � gðU	Þk k� c Un � U	k k;
we have

Unþ1 � U	k k� PðUn � U	Þxx

�� ��þ PðgðUnÞ � gðU	ÞÞk k
ð39Þ

� P Un � U	ð Þxx

�� ��þ c P Un � U	ð Þk k ð40Þ

Let Unþ1 ¼ CT
nþ1wðx; tÞ

U	 ¼ CTwðx; tÞ

2T
nþ1¼ CT

nþ! � CT

Equation (40) gives

2T
nþ1 � 2T

n D2
xP2

t þ cP2
t

�� �� ð41Þ

The following formula Eq. (42) can be obtained using

recursive relation.

2T
nþ1 � 2T

n D2
xP2

t þ cP2
t

�� ��n20 ð42Þ

When Lim
n!1

D2
xP2

t þ cP2
t

�� ��n¼ 0, the series solution of Eq.

(22) using the LLWM converges to U	ðxÞ. Using the def-

initions of Dx and Pt, we can get the value of c.

Suppose k ¼ k0 ¼ 1 and M ¼ M0, the maximum element

of Dx and Pt is 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M � 1ð Þ 2M � 3ð Þ

p
and 0.5,

respectively.

Illustrative Examples

Example 1 We consider the Fisher’s equation of the form

(Hariharan and Kannan 2009)

ou

ot
¼ o2u

ox2
þ auð1� uÞ ð43Þ

Subject to the initial condition

uðx; 0Þ ¼ 1

1þ e
ffiffi
a
6

p
x

� 
2
ð44Þ

Using Homotopy analysis method (HAM) (see Appendix),

the exact solution in a closed form is given by

uðx; tÞ ¼ 1

1þ e
ffiffi
a
6

p
x�5

6
at

� 
2
ð45Þ

The Haar wavelet scheme (HWS) of Eq. (43) is given by

cT
ðmÞQ mð ÞhðmÞðxlÞ þ xl �cT

ðmÞPðmÞkþ g01ðtsþ1Þ � g00ðtsþ1Þ
h i

þ g00ðtsþ1Þ ¼ u00ðxl; tsþ1Þ þ auðxl; tsþ1Þ½1� uðxl; tsþ1Þ�

Table 1 Comparison between the exact and LLWM for Example 1

x t Uexact ULLWM Absolute

error

Percentage

(%) error

0.25 0.5 0.81839 0.81855 0.00016 0.012

1.0 0.98292 0.98305 0.00013 0.013

2.0 0.99988 0.99999 0.00011 0.011

5.0 1.00000 1.00000 0.00000 0.000

0.50 0.5 0.77590 0.77602 0.00012 0.015

1.0 0.97815 0.97824 0.00009 0.009

2.0 0.99985 0.99996 0.00011 0.011

5.0 1.00000 1.00000 0.00000 0.000

0.75 0.5 0.72582 0.72595 0.00013 0.017

1.0 0.92207 0.92221 0.00014 0.015

2.0 0.99981 0.99993 0.00012 0.012

5.0 1.00000 1.00000 0.00000 0.000

Table 2 Comparison between the exact and LLWM for Example 2

x t Uexact ULLWM Absolute

error

Percentage

(%) error

0.25 0.5 0.51830 0.51839 0.00009 0.017

1.0 0.58011 0.58018 0.00007 0.012

2.0 0.69492 0.69499 0.00007 0.001

5.0 0.91078 0.91085 0.00007 0.007

8.5 0.98331 0.98336 0.00005 0.005

11.0 0.99513 0.99514 0.00001 0.001

0.50 0.5 0.47414 0.47423 0.00009 0.018

1.0 0.53655 0.53661 0.00006 0.011

2.0 0.65621 0.65626 0.00005 0.007

5.0 0.89533 0.89535 0.00002 0.002

8.5 0.98012 0.98015 0.00003 0.003

11.0 0.99423 0.99424 0.00001 0.001

0.75 0.5 0.43037 0.43047 0.00010 0.023

1.0 0.49242 0.49252 0.00010 0.020

2.0 0.61531 0.61539 0.00008 0.013

5.0 0.87757 0.87765 0.00008 0.009

8.5 0.97633 0.97636 0.00003 0.003

11.0 0.99312 0.99314 0.00002 0.002
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From the above formula, the wavelet coefficients cT
ðmÞ can

be successively calculated.

Our proposed method (LLWM) can be compared with

Wazwaz and Gorguis results (See Ref. (Wazwaz and

Gorguis 2004)), Mehmet Merdan results (See Ref. (Merdan

2012)), (Hariharan and Kannan 2009) and Zhou (Zhou

2008) results. Good agreement with the exact solution is

observed.

Example 2 Consider the Fisher equation of the form

(Wazwaz and Gorguis 2004; Yıldırım et al. 2012; Harih-

aran and Kannan 2009)

ou

ot
¼ o2u

ox2
þ u2ð1� uÞ; 0\ x \1 ð46Þ

With the initial condition

uðx; 0Þ ¼ 1

1þ e
xffiffi
2
p ð47Þ

Table 3 Comparison between the exact and LLWM for Example 3

x t Uexact ULLWM Absolute

error

Percentage

(%) error

0.25 0.5 0.8184 0.8186 0.0002 0.02

1.0 0.9829 0.9832 0.0003 0.03

1.5 0.9999 0.9999 0.0000 0.00

2.0 1.0000 1.0000 0.0000 0.00

0.50 0.5 0.7758 0.7761 0.0003 0.03

1.0 0.9781 0.9783 0.0002 0.02

1.5 0.9999 1.0000 0.0001 0.01

2.0 1.0000 1.0000 0.0000 0.00

0.75 0.5 0.7258 0.7261 0.0003 0.04

1.0 0.9721 0.9723 0.0002 0.02

1.5 0.9998 0.9999 0.0001 0.01

2.0 1.0000 1.0000 0.0000 0.00

Table 4 Comparison between exact solution and LLWM for

Example 3 for different values of x and t

x t exact LLWM Absolute

error

Percentage

(%) error

0.1 0.2 0.5054 0.5062 0.0008 0.15

0.2 0.4 0.7364 0.7371 0.0007 0.09

0.3 0.6 0.8780 0.8786 0.0006 0.07

0.4 0.8 0.9475 0.9480 0.0005 0.05

0.5 1.0 0.9781 0.9784 0.0003 0.03

0.6 1.2 0.9910 0.9913 0.0003 0.03

0.7 1.4 0.9963 0.9966 0.0003 0.03

0.8 1.6 0.9985 0.9986 0.0001 0.01

0.9 1.8 0.9994 0.9994 0.0000 0.00

1.0 2.0 0.9998 0.9998 0.0000 0.00

Fig. 1 Numerical solutions of Fisher’s equation for (x, t) and a =

0.5, k = 1 and M = 4
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Fig. 2 The surface area shows that u(x, t) using LLWM for Eq. (43)

at x = 0.25, k = 1 and M ¼ 4
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Fig. 3 The surface area shows that u(x, t) using LLWM for Eq. (43)

at x = 0.75, k = 1 and M ¼ 4
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Using the HAM, the exact solution in a closed form is

given by

uðx; tÞ ¼ 1

1þ evðx�vtÞ ; v ¼ 1ffiffiffi
2
p ð48Þ

Our proposed method (LLWM) can be compared with

Wazwaz and Gorguis results (SeeRef. [26] ) and Mehmet

Merdan results (See Ref. Mehmet Merdan 2012), Hariha-

ran et al. (2009) and Zhou (2008)results. Good agreement

with the exact solution is observed.

Example 3 Let us consider the following time-fractional

Fisher’s reaction–diffusion equation

Da
t u ¼ uxx þ 6uð1� uÞ; t [ 0; x 2 R ð49Þ

With initial condition

uðx; 0Þ ¼ 1

1þ exð Þ2
ð50Þ

Using differential transform method (DTM), the series

solution is given by

uðx; tÞ ¼ 1

4
� 1

4
xþ 1

16
x2 þ 1

48
x3

þ 5

4
� 5

8
x� 5

16
x2

� �
ta

C aþ 1ð Þ

þ 25

16
þ 25

16
x

� �
t2a

C 2aþ 1ð Þ �
125

8

t3a

C 3aþ 1ð Þ þ � � �

ð51Þ

When a = 1, the exact solution is given by

uðx; tÞ ¼ 1

1þ ex�5tð Þ2
ð52Þ

Tables 1, 2, 3, and 4 show the numerical solutions of the

Fisher’s equations and the fractional Fisher’s equations for

various values (x, t) and a = 1 Our LLWM results are in

excellent agreement with the exact solution, the Homotopy

analysis method (HAM) and the differential transform

method (DTM). Figures 1, 2, 3, 4, 5 and 6 show the

numerical solutions of the Fisher’s equation and the

fractional Fisher’s equations for various values of (x,

t) and a = 1.

All the numerical experiments presented in this section

were computed in double precision with some MATLAB

codes on a personal computer System Vostro 1400

Processor 986 Family 6 Model 15 Stepping 13 Genuine

Intel *1596 MHz.
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Fig. 4 The surface area shows that u(x, t) using LLWM for Eq. (44)

at x = 0.25, k = 1 and M ¼ 4
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Fig. 5 The surface area shows

that u(x, t) using LLWM for

Eq. (44) at x = 0.75, k = 1

and M ¼ 4
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Conclusion

In this work, a new coupled wavelet-based method has

been successfully employed to obtain the numerical solu-

tions of Fisher’s and time-fractional Fisher’s equations

arising in population genetics. The proposed scheme is the

capability to overcome the difficulty arising in calculating

the integral values while dealing with nonlinear problems.

This method shows higher efficiency than the traditional

Legendre wavelet method for solving nonlinear PDEs.

Numerical example illustrates the powerful of the proposed

scheme LLWM. Also this paper illustrates the validity and

excellent potential of the LLWM for nonlinear and frac-

tional PDEs. The numerical solutions obtained using the

proposed method show that the solutions are in very good

coincidence with the exact solution. In addition, the cal-

culations involved in LLWM are simple, straight forward

and low computation cost. In section Convergence analysis

and error estimation, we have developed the convergence

of the proposed algorithm.
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Appendix

Basic Idea of Homotopy Analysis Method (HAM)

In this section, the basic ideas of the homotopy analysis

method are presented. Here, a description of the method is

given to handle the general nonlinear problem.

Nu0 tð Þ ¼ 0; t [ 0 ð53Þ

where N is a nonlinear operator and u0ðtÞ is unknown

function of the independent variable t.

Fig. 6 The surface area shows that u(x, t) using LLWM for Eq. (45) for various values of (x, t) and M ¼ 4
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Zero-Order Deformation Equation

Let u0ðtÞ denote the initial guess of the exact solution of

Eq. (1), h = 0 an auxiliary parameter, HðtÞ 6¼ 0 an auxil-

iary function and L is an auxiliary linear operator with the

property.

L f tð Þð Þ ¼ 0; f tð Þ ¼ 0 ð54Þ

The auxiliary parameter h, the auxiliary function HðtÞ,
and the auxiliary linear operator L play an important role

within the HAM to adjust and control the convergence

region of solution series. Liao (Merdan 2012) constructs,

using q 2 0; 1½ � as an embedding parameter, the so-called

zero-order deformation equation.

1� qð ÞL½ð/ t; qð Þ � u0 tð Þ� ¼ qhH tð ÞN½ / t; qð Þð �; ð55Þ

where / t; qð Þ is the solution which depends on h, H tð Þ; L,

u0ðtÞ and q. When q = 0, the zero-order deformation Eq.

(54) becomes

/ t; 0ð Þ ¼ u0ðtÞ; ð56Þ

and when q = 1, since h = 0 and HðtÞ 6¼ 0, the zero-order

deformation Eq. (53) reduces to,

N / t; 1ð Þ½ � ¼ 0; ð57Þ

So, / t; 1ð Þ is exactly the solution of the nonlinear equation.

Define the so-called mth order deformation derivatives.

um tð Þ ¼ 1

m!

om/ t; qð Þ
oqm

ð58Þ

If the power series Eq. (55) of / t; qð Þ converges at q = 1,

then we gets the following series solution:

u tð Þ ¼ u0 tð Þ þ
X1

m¼1

um tð Þ ð59Þ

where the terms um tð Þ can be determined by the so-called

high-order deformation described below.

High-Order Deformation Equation

Define the vector,

un¼
�!fu0 tð Þ; u1 tð Þ; u2 tð Þ. . .. . .un tð Þg ð60Þ

Differentiating Eq. (55) m times with respect to embedding

parameter q, the setting q = 0 and dividing them by !, we

have the so-called mth order deformation equation.

L um tð Þ � @mum�1 tð Þ½ � ¼ hH tð ÞRm um
�!; t
� �

; ð61Þ

where

@m ¼
0; m� 1

1; otherwise

�
ð62Þ

and

Rm um
�!; t
� �

¼ 1

m� 1ð Þ!
om�1N½/ðt; qÞ�

oqm�1
ð63Þ

For any given nonlinear operator N, the term Rm um
�!; t
� �

can be easily expressed by Eq. (63). Thus, we can gain

u1 tð Þ; u2 tð Þ. . .. . .: by means of solving the linear high-order

deformation with one after the other order in order. The

mth order approximation of u(t) is given by

u tð Þ ¼
Xm

k¼0
uk tð Þ ð64Þ

ADM, VIM and HPM are special cases of HAM when we set

h ¼ �1 and H r; tð Þ ¼ 1. We will get the same solutions for

all the problems by above methods when we set h = -1 and

H r; tð Þ ¼ 1. When the base functions are introduced the

H r; tð Þ ¼ 1 is properly chosen using the rule of solution

expression, rule of coefficient of ergodicity and rule of

solution existence.
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